
Matlab 2 - 1 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

E2.5 Signals & Systems
More on MATLAB

!  MATLAB has five flow control constructs:
•  if statements

•  switch statements

•  for loops

•  while loops

•  break statements

!  if statement
if A > B
 'greater'
elseif A < B
 'less'
elseif A == B
 'equal'
else
 error('Unexpected situation')
end

>, < and == work with
scalars, but NOT

matrices

Matlab 2 - 2 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

Matrix Comparison - Beware!

16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

16 5 9 4
 2 11 7 14
 3 10 6 15
13 8 12 1

A

B

» A = magic(4)

» B = A’

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 0 0 1
1 0 1 0
1 0 0 0
0 1 1 0

0 1 1 0
0 0 0 1
0 1 0 1
1 0 0 0

C=A>B

C=(A==B)

C=A<B

1 = true

0 = false

Matlab 2 - 3 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

Built-in Logic functions for matrices

!  Several functions are helpful for reducing the results of matrix
 comparisons to scalar conditions for use with if, including
"  isequal(A,B) returns ‘1’ if A and B are identical, else return ‘0’
"  isempty(A) returns ‘1’ if A is a null matrix, else return ‘0’
"  all(A) returns ‘1’ if all elements A is non-zero
"  any(A) returns ‘1’ if any element A is non-zero

if isequal(A,B)
 'equal'
else
 'not equal'
end

Matlab 2 - 4 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

Control Flow - Switch & Case

!  Assume method exists as a string variable:

switch lower(method)
 case {'linear','bilinear'}
 disp('Method is linear')

 case 'cubic’
 disp('Method is cubic')

 case 'nearest’
 disp('Method is nearest')

 otherwise
 disp('Unknown method.')

end

Use otherwise to
catch all other cases

Matlab 2 - 5 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

Control Flow - For Loop

n = 4;

a = zeros(n,n) % Preallocate matrix
for i = 1:n
 for j = 1:n
 H(i,j) = 1/(i+j);
 end
end

This makes it faster
and uses less memory

Matlab 2 - 6 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

“Life is too short to spend writing for-loops”

!  Create a table of logarithms:

x = 0;
for k = 1:1001
 y(k) = log10(x);
 x = x + .01;
end

!  A vectorized version of the same
 code is
x = 0:.01:10;
y = log10(x);

Matlab 2 - 7 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

Control Flow - While Loop

a = 0; fa = -Inf;
b = 3; fb = Inf;
while b-a > eps*b
 x = (a+b)/2;
 fx = x^3-2*x-5;
 if sign(fx) == sign(fa)
 a = x; fa = fx;
 else
 b = x; fb = fx;
 end
end
x

Find root of the polynomial x3 - 2x - 5 ..

… using iterative bisection method

Matlab 2 - 8 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

Control Flow - break

!  The break statement lets you
 exit early from a for or while
 loop.

!  In nested loops, break exits from
 the innermost loop only.

!  Why is this version of the
 bisection programme better?

a = 0; fa = -Inf;
b = 3; fb = Inf;
while b-a > eps*b
 x = (a+b)/2;
 fx = x^3-2*x-5;
 if fx == 0
 break
 elseif sign(fx) == sign(fa)
 a = x; fa = fx;
 else
 b = x; fb = fx;
 end
end
x

Matlab 2 - 9 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

Matrix versus Array Operations

16 3 2 13
 5 10 11 8
 9 6 7 12
 4 15 14 1

A

341 285 261 269
261 301 309 285
285 309 301 261
269 261 285 341

256 9 4 169
25 100 121 64
81 36 49 144
16 225 196 1

A * A

A .* A

Inner product matrix multiply

Element-by-element array multiply

Matlab 2 - 10 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

Matrix Operators

Matlab 2 - 11 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

Array Operators

Matlab 2 - 12 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

M-files: Scripts and Functions

!  There are two kinds of M-files:
•  Scripts, which do not accept input arguments or return output arguments.

 They operate on data in the workspace.

•  Functions, which can accept input arguments and return output
 arguments. Internal variables are local to the function.

% Investigate the rank of magic squares
r = zeros(1,32);
for n = 3:32
 r(n) = rank(magic(n));

end
r
bar(r)

Script magic_rank.m

Matlab 2 - 13 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

Functions

function r = myfunct (x)
% Calculate the function:
% r = x^3 - 2*x - 5
% x can be a vector

r = x.^3 - x.*2 -5;

Define function name and arguments Return variable

% on column 1 is a comment

» X = 0:0.05:3;
» y = myfunct (x);
» plot(x,y)

function myfunct.m

This is how plot on p.2-27 was obtained

Matlab 2 - 14 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

Scopes of variables

!  All variables used inside a function are local to that function
!  Parameters are passed in and out of the function explicitly as

 defined by the first line of the function
!  You can use the keyword global to make a variable visible

 everywhere
!  As a good programming practice, only use global variables

 when it is absolutely required

Matlab 2 - 15 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

MATLAB Programming Style Guide (1)

!  This Style Guideline is originally prepared by Mike Cook

"  The first line of code in script m-files should be indicate the name of
 the file.

"  The first line of function m-files has a mandatory structure. The first
 line of a function is a declaration line. It has the word function in it to
 identifies the file as a function, rather than a generic m-file. For
 example, for a function named abs_error.m, the the first line would
 be:
function [X,Y] = abs_error(A,B)

"  A block of comments should be placed at the top of the regular m

-files, and just after the function definition in function m-files. This is

 the header comment block. The formats are different for m-files and
 functions.

Matlab 2 - 16 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

Style Guide (2)

!  Variables should have meaningful names. This will make your code
 easier to read, and will reduce the number of comments you will need.
 However here are some pitfalls about choosing variable names:

•  Meaningful variable names are good, but when the variable name
 gets to 15 characters or more, it tends to obscure rather than
 improve code.

•  The maximum length of a variable name is 19 characters and all
 variables must start with a character (not number).

•  Be careful of naming a variable that will conflict with matlab's built-in
 functions, or reserved names: if, while, end, pi, sin, cos, etc.

•  Avoid names that differ only in case, look similar, or differ only slightly
 from each other.

!  Make good use of white space, both horizontally and vertically, it will
 improve the readability of your program greatly.

Matlab 2 - 17 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

Style Guide (3)

!  Comments describing tricky parts of the code, assumptions, or design
 decisions should be placed above the part of the code you are
 attempting to document.

!  Do not add comment statements to explain things that are obvious.

!  Try to avoid big blocks of comments except in the detailed description of
 the m-file in the header block.

!  Indenting. Lines of code and comments inside branching (if block) or
 repeating (for and while loop) logic structures will be indented 3 spaces.
 NOTE: don't use tabs, use spaces. For example:

 for i=1:n
 disp('in loop')
 if data(i) < x
 disp('less than x')
 else
 disp('greater than or equal to x')
 end
 count = count + 1;
 end

Matlab 2 - 18 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

Style Guide (4)

!  Be careful what numbers you "hardwire" into your program. You may
 want to assign a constant number to a variable. If you need to change
 the value of the constant before you re-run the program, you can change
 the number in one place, rather than searching throughout your
 program.

% This program "hardwires" the constant 100
% in three places in the code.

for i = 1:100
 data = r(i);
end
temp = data/100;
meanTemp = sum(temp)/100;

% This program assigns the constant value to
% the variable, n.

n = 100; % number of data points.

for i = 1:n
 data = r(i);
end
temp = data/n;
meanTemp = sum(temp)/n;

Bad!

Good

Matlab 2 - 19 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

Style Guide (5)

!  No more than one executable statement per line in your regular or
 function m-files.

!  No line of code should exceed 80 characters. (There may be a few times
 when this is not possible, but they are rare).

!  The comment lines of the function m-file are the printed to the screen
 when help is requested on that function.

function bias = bias_error(X,Y)
% Purpose: Calculate the bias between input arrays X and Y
% Input: X, Y, must be the same length
% Output: bias = bias of X and Y
%
% filename: bias_error.m
% Mary Jordan, 3/10/96
%
bias = sum(X-Y)/length(X);

Matlab 2 - 20 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

Style Guide (6) - Another good example

function [out1,out2] = humps(x)
%
% Y = HUMPS(X) is a function with strong maxima near x = .3
% and x = .9.
%
% [X,Y] = HUMPS(X) also returns X. With no input arguments,
% HUMPS uses X = 0:.05:1.
%
% Copyright (c) 1984-97 by The MathWorks, Inc.
% $Revision: 5.3 $ $Date: 1997/04/08 05:34:37 $

if nargin==0, x = 0:.05:1; end

y = 1 ./ ((x-.3).^2 + .01) + 1 ./ ((x-.9).^2 + .04) - 6;

if nargout==2,
 out1 = x; out2 = y;
else
 out1 = y;
end

Matlab 2 - 21 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

Function of functions - fplot

% Plot function humps(x) with FPLOT
 fplot('humps',[0,2])

FPLOT(FUN,LIMS)
 plots the function
 specified by the string
 FUN between the x
-axis limits specified
 by
LIMS = [XMIN XMAX]

Matlab 2 - 22 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

Find Zero

% Find the zero of humps(x) with FZERO
 z = fzero('humps',1);
 fplot('humps',[0,2]);
 hold on; plot(z,0,'r*'); hold off

FZERO(F,X) tries to
 find a zero of F.
FZERO looks for an
 interval containing a
 sign change for F
 and containing X.

Matlab 2 - 23 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

Find minimum

% Minimize humps(x) with FMIN
m = fmin('humps',0.25,1);
fplot('humps',[0 2]); hold on; plo
t(m,humps(m),'r*'); hold off

X = FMIN('F',x1,x2)
 attempts to return a
 value of x which is a
 local minimizer of
F(x) in the interval
x1 < x < x2.

Matlab 2 - 24 pykc - Jan-8-10 E2.5 Signals & Systems – Matlab Tutorial 2

Integration of Curve

 % Compute integral with QUAD
 q = quad('humps',0.5,1);
 fplot('humps',[0,2]);
 title(['Area = ',num2str(q)]);

Q = QUAD('F',A,B)
 approximates the
 integral of F(X) from A
 to B to within a
 relative error of 1e-3
 using an adaptive
 recursive Simpson's
 rule.

